
JOURNAL OF OBJECT TECHNOLOGY 
Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2004 

 
Vol. 3, No. 5, May-June 2004 

 
 
 
 

Cite this column as follows: John D. McGregor: “Software Architecture”, in Journal of Object 
Technology, vol. 3, no. 5, May-June 2004, pp. 65-77. 
http://www.jot.fm/issues/issue_2004_05/column7  

Software Architecture 
John D. McGregor, Clemson University and Luminary Software, U.S.A. 

Abstract 
Software architecture has received much attention in the past few years. This is not a 
block diagram that gives a rough functional decomposition of the system. It is a multi-
perspective, quality-based approach to ensuring that software is built to fit its purpose. 
In this edition of Strategic Software Engineering we will consider how software 
architecture provides strategic support to the organization. 

1 INTRODUCTION 

This column began in the last issue with no overview of its scope and I would like to 
provide that now. As the name “Strategic Software Engineering” implies, I intend to 
discuss aspects of software engineering that assist a company in achieving and 
maintaining strategic advantage. As software becomes omnipresent in products in all 
domains, we have increasing opportunities to not only help achieve the vision of our 
companies but also to help shape what that vision is. Since “strategy” is not a prominent 
idea in technical education and training, I hope this column will raise awareness and 
provoke discussion. 

In the last issue I provided an overview of the software product line strategy. This 
approach to software-intensive product development has allowed a number of companies 
to achieve strategically significant objectives that have affected their market position. In 
this issue I will discuss the strategic impact of modern software architecture approaches. 
In future issues I will talk about topics such as domain-centric development, the range of 
development process models, and the strategic implications of testing. I look forward to 
hearing from readers with differing opinions or who have suggestions for topics. 

The software architecture practiced today is not your mom’s architecture. The days of 
drawing a simple block diagram to identify separate functional units or handcrafting each 
individual application are over [Lloyd 99]. Today’s software architecture provides a more 
comprehensive, but also more exacting, model of the completed system. Software 
architecture techniques support sophisticated analyses of the system before it is 
implemented. These techniques, such as Attribute Driven Design (ADD) [Bass 03], 
ensure that the software implemented using the architecture is fit for its intended purpose. 

http://www.jot.fm
http://www.jot.fm/issues/issue_2004_05/column7


 
SOFTWARE ARCHITECTURE 

 
 
 
 

66 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

There are a number of examples of using architecture for strategic purposes. The 
Common Object Request Broker Architecture (CORBA) is one well-known example. 
CORBA was used to bridge together various legacy systems, integrate systems written in 
multiple languages, and facilitate interaction between machines with different hardware 
architectures. This was intended to provide legacy systems with new life while allowing 
new applications to be quickly integrated giving the company a strategic advantage over 
companies that modified legacy systems. In this column I will explore a more recent 
example: a very brief case study on the Eclipse open source IDE platform. 

In this column I will provide an overview of modern software architecture concepts. 
Then I will show how software architecture can have strategic impact. I will conclude by 
suggesting some actions that archiects can take to influence business strategy. 

2 OVERVIEW OF SOFTWARE ARCHITECTURE 

The architecture of a software system defines its structure. In fact, it defines several 
structures, each of which comprises elements and the relationships among those elements. 
The elements may be computational entities related by control flow or business entities 
connected by semantic constraints. (The software architecture web page at the Software 
Engineering Institute, http://www.sei.cmu.edu/architecture/definitions.html, has a large 
number of definitions. Take your pick.)  

The basic architecture design process consists of a systematic decomposition of 
elements into aggregates of more detailed elements. In Figure 1 the initial monolithic 
element is decomposed into a Model, Controllers, and Views elements. Each of the new 
elements contributes to the total behaviors that the original element had. 

 
 

decompose

Model 

Views 

Controllers

 
Figure 1 - Architectural decomposition 

Using an approach such as ADD, the architect chooses a specific decomposition in order 
to enhance certain of the qualities the final product should possess. Each decomposition 
also usually degrades certain qualities as well. In Figure 1, the Model-View-Controller 
decomposition is chosen to make the system more modifiable. Specifically to enhance the 
ability to add new views on the model. The decomposition also degrades performance 
because of the overhead of the Model notifying Views when a change has occurred. This 

http://www.sei.cmu.edu/architecture/definitions.html


 
OVERVIEW OF SOFTWARE ARCHITECTURE 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 67 

is an acceptable trade-off for the architect since the system only operates in human time 
as opposed to being a “real-time”, i.e. computer time, system. 

The architecture creation process seeks to develop a system with specified 
functionality and specified levels of certain qualities, which have been prioritized.  
Beginning with a monolithic structure that embodies all of the required functionality, 
represented by the box on the left in Figure 1, the architect systematically decomposes 
the functionality and allocates it to members of the newly created structure.  

 

 

Model 

Views 

Controllers Model 

Views 

Controllers

decompose

 
Figure 2 - Further decomposition 

The decomposition process continues, as shown in Figure 2, until the members of the 
architectural structure are sufficiently fine-grained. That point is reached when the 
optimum mix of quality levels is achieved. Then, individual teams can be assigned to 
design and implement each “chunk”  of the architecture. 

The drawings in Figure 1 and Figure 2 intuitively show the elements and 
relationships in our simple architecture but they are not very specific. The drawing in 
Figure 1 communicates to those who already know the story of MVC but it does not 
have sufficient detail for the novice to understand. A number of architecture description 
languages have been developed [Luckham 95][Allen 94] that support detailed 
specifications of architectures; however, these have never gained widespread acceptance. 
Many of the concepts represented in these languages have been incorporated into the 
latest version of the Unified Modeling Language, UML2.0[OMG03]. Figure 3 illustrates 
some of the notation for the information in the decomposition on the right in Figure 1. 

 



 
SOFTWARE ARCHITECTURE 

 
 
 
 

68 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

 
Figure 3 - UML architecture diagram 

In Figure 3, the UML diagram provides additional information about the 
provides/requires and signals/catch interfaces for each module. Each small rectangle on 
the boundary of a larger rectangle represents a port, an abstraction of an interface which 
hides exactly how the interface is related to the module, the bigger rectangle. Each 
“lolipop” and “cup” represent a provides and requires defintion respectively. This shows 
diagrammatically the relationships among modules but does not provide the details of the 
required and provided behaviors. I am not trying to give a tutorial on UML2.0 or 
architecture documentation. This diagram should be sufficient for the references that I 
will make later in the column. 

This still captures only a small fraction of the information needed. In this case, largely 
information about the static structure. The architect creates various diagrams to depict the 
component structure,  component communication, and the component deployment. The 
architecture description contains several “views” of the architecture that serve to provide 
different types of information about the structure of the software. One of the dynamic 
interactions among the static architectural elements from Figure 1 is shown in Figure 4 
using a UML sequence diagram. 

 

 
Figure 4 - A change to the Model is propagated 



 
OVERVIEW OF SOFTWARE ARCHITECTURE 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 69 

While this describes basic architecture design actions, it does not realistically portray the 
typical architecture development approach. In most cases, the architect begins with a pre-
defined, i.e. reference, architecture. This may be the proverbial “de facto industry 
standard”, such as J2EE for e-commerce, web-based applications or it may truly be a 
requirement such as the Command, Control, Communications, Computer, Intelligence, 
Surveillance, and Reconnaissance (C4ISR) architecture framework for certain military 
systems in the United States. These reference architectures provide a high-level 
decomposition that sets the basic levels of design qualities but leaves room for the 
architect to perform low-level decompositions that further differentiate the quality 
attribute values for their product.  

Selecting a specific reference architecture leads to the use of components that have 
been developed with that architecture as a design base. The commercial community that 
grows around an architecture is an important factor in selecting which architecture to 
choose. The larger and more diverse the community, the more likely that components can 
be purchased to speed product development. Also patterns, books of advice and 
examples, and other assets are available for that architecture. 

The architecture development process is part creative construction and part 
management planning. The architecture business cycle [Bass 03] provides the opportunity 
for the organization to think at a strategic level about the competition, trends in their 
domain, and the evolution of technology. In the next section I will provide some 
examples of these activities. 

3 STRATEGIC USE OF SOFTWARE ARCHITECTURE 

In any company, architects help translate business strategy into technical strategy. In 
companies that produce software-intensive products1, the architect can have input into 
business strategy [Malan 02]. This ensures the architecture fits the corporate strategy and 
it helps the company take advantage of strategic opportunities provided by the 
architecture. Porter describes strategy as “defining a company’s position, making trade-
offs, and forging fit among activities”[Porter 96]. I want to examine a number of 
architecture-related situations in terms of that definition. 

Strategic Planning 

Architecture can serve as a vehicle for positioning the company.  Maccari and Galal 
define an architecture view, termed the architectonic view, which provides a means for 
explicitly representing the actual and planned evolution of the architecture [Maccari 02]. 
This view considers the system being architected as a set of layers that divide the 
modules of the architecture according to the likelihood the module will change. This can 
be based both on historic data and forecasts for technology and domain changes. Figure 5 

                                                           
1 By software-intensive I mean that the production of the software content requires a significant portion of 
the development time or represents a significant portion of the investment on the part of the company. 



 
SOFTWARE ARCHITECTURE 

 
 
 
 

70 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

shows the architectonic view of the MVC where the addition or deletion of a View is 
most likely change to the system. This view can capture strategic information from 
domain studies and other business intelligence. 
 

 
Figure 5 - Architectonic view of MVC 

 
The architecture can provide a strategic roadmap for the company’s products, perhaps as 
a product line [McGregor 04]. Architecture analysis techniques provide a means of 
validating the direction of the evolution of the architecture and the products. 

Enterprise Architectures 

An enterprise architecture is used to provide top level executives with an integrated view 
of the totality of their Information Technology (IT) enterprise. An enterprise architecture 
shows how all of the facets of an organization’s computing environment fit together. 
While the enterprise architecture encompasses more than software architectures, it does 
provide a context in which software architectures are coordinated. 

In a series of articles Malveau describes how an enterprise architecture bridges the 
gap between business and technical strategies. He makes the point that “crucial high-level 
business decisions should not be contrained by technical concerns.[Malveau 04]” I agree 
but with the emphasis on the “should.” In fact, technical concerns sometimes do need to 
be considered in companies whose chief business is the development of software-
intensive products. Telecommunications and, most recently automotive, executives are 



 
STRATEGIC USE OF SOFTWARE ARCHITECTURE 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 71 

finding that their companies have become software dependent. They are adopting 
strategies that flow from standard architectures in their domain. Several automobile 
manufacturers including BMW, VW, and DaimlerChrysler announced plans to create, 
and market, a standard software architecture for automobile electronics, AUTOSAR 
[Hansen 03]. 

The Zachman Framework for Enterprise Architecture [Zachman 87], Figure 6, 
provides a context in which the input from technical staff is blended with input from 
executives to establish the information technology strategy for an organization. The 
framework guides the enterprise architects to trade-offs that must be made among the 
information represented in each cell of the table. By resolving these trade-offs, there is 
close fit among the activities represented in the cells.  

For example, consider the Application Architecture cell, at the intersection of the two 
arrows in Figure 6. Adjacent cells relate the application architecture to business 
processes, up, the system design, down, logical data model, left, and distributed 
architecture, right. The row provides an architectural view while the column represents a 
hierarchical relationship from abstract to concrete, from domain to implementation. 

 

  
Figure 6 - Zachman Framework for Enterprise Architecture 

 



 
SOFTWARE ARCHITECTURE 

 
 
 
 

72 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

Reference Architectures 

Choosing a reference software architecture, say the J2EE architecture, as the starting 
point for a product or product line has strategic implications. For one thing, when you 
choose a reference architecture you join a community, something like marrying into a 
family. The community has a history and a culture.  

• A major consideration in selecting one architecture over another is the availability 
and expense of artifacts. The community that builds up around an architecture will 
have a “cultural” bias about how the community operates. Consider the 
availability and cost of artifacts for the J2EE environment and for the CORBA 
environment. The selection of one community over another has major cost 
implications. The J2EE community has much more of a low-cost, open source 
history than does the CORBA community. 

• One of the technical concerns that should significantly influence business 
decisions is the company’s prior investment and required future investment in 
staff expertise. Most product development requires technical knowledge and skill 
that can not be developed within the development schedule for a single product. 
Technical managers make investment decisions in advance of product 
requirements. The complexity of reference architectures and their accompanying 
infrastructure require substantial time to learn. A business decision to adopt a 
different strategic direction that will make obsolete much of the technical 
knowledge of the development staff and require substantial investment in 
acquiring new expertise must include consideration of these costs. 

• Although the time between releases of versions of a reference architecture is 
relatively long, the amount of change is often rather large. The anticipated 
sequence of releases has strategic significance since it influences the refresh rate 
of the development assets. Major, frequent changes to the architecture requires 
that assets be modified often. Suppliers work to the latest version of a standard. 
Not upgrading to the latest version can make it difficult to purchase components 
and can signal to customers that obsolecence is just ahead. I have had success 
with a view in the architecture that captures release dates for technologies, 
products, and standards. It can be combined with the architectonic view shown in 
Figure 5. 

• The appropriateness of the reference architecture and its generality affect the 
applicability to a wide range of products. Earlier I described a decomposition 
technique that ensured that the architecture possessed the required qualities. When 
a reference architecture is to be selected, its qualities are already determined. The 
candidate architectures must be evaluated, using a technique such as the 
Architecture Trade-off Analysis Method (ATAM) [Bass 03], to determine which 
most completely supplies the quality levels that products built from the 
architecture are expected to possess. For example, I once had a client who was 
using the J2EE architecture for an application that consisted largely of streaming 



 
STRATEGIC USE OF SOFTWARE ARCHITECTURE 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 73 

video. The transaction-orientation of J2EE was resulting in very poor performance 
for the video feed. 

Architecture as Product 

After you have optimized delivery to your primary markets, the next strategy is to 
position yourself as a supplier to your competitors. For example, Nokia has achieved a 
strategic advantage in the cellular phone industry by establishing their architecture and 
component libraries, the S60 platform, as a product that provides several competing cell 
phone manufacturers a large percentage of the software needed for their cell phone 
products [Nokia 04]. They have provided a platform and an architecture that have 
attracted additional independent suppliers who provide products based on the 
architecture. Nokia has made this a strategic approach by providing an architecture and 
component libraries for several different types of cell phones. Because of its position as 
supplier, Nokia is now in a position to chart the direction of future evolution not only of 
their own products but of those of their competitors as well. They have achieved a close 
fit between their activities as a producer of products and as a supplier of parts. 

4 CASE STUDY: ECLIPSE 

Eclipse is an open source project producing a platform upon which integrated 
development environments can be built. This is a project with an architecture that is 
intended to enhance the quality of supporting distributed development and maintenance 
of behaviors. Beyond a basic core functionality, behaviors are added to Eclipse by 
defining and implementing a plug-in. A plug-in is a package that combines code that 
implements the functionality being added to Eclipse and an xml-based manifest that 
provides configuration information. The manifest describes extensions to menus, 
functionality that must be present for the plug-in to work correctly, and new windows that 
will be part of the Eclipse view. Figure 7 shows a screen print of Eclipse I took recently 
while using the Java Development Tools (JDT) perspective. The task list at the bottom 
right of the screen is a plug-in that can be removed, not only from the screen but from the 
product. 



 
SOFTWARE ARCHITECTURE 

 
 
 
 

74 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

 
Figure 7 - Eclipse interface 

 
The Eclipse architecture is defined to faciltate the addition of new plug-ins and the 
removal of irrelevant ones. A plug-in is deployed by creating a sub-directory, in the plug-
ins directory, into which is placed the implementation files as well as the manifest. Plug-
ins are bound to Eclipse at start time for an instance of Eclipse. The plug-ins directory is 
searched and each sub-directory that contains the manifest is processed to bind the new 
behaviors into the running instance. More details on the Eclipse project can be found at 
http://www.eclipse.org. 

Eclipse was initiated by IBM a number of years ago and more recently was released 
to the open source community. The plug-in architecture is a strategic move to support a 
broad spectrum of development purposes. Eclipse is a part of IBM’s e-commerce on 
demand strategy. The ease of extension provided by the architecture is intended to allow 
IBM to remain visible in niche markets where it can not satisfy every tool request but it 
can provide the basis upon which others develop their products. The open source nature 
of Eclipse allows IBM to create implicit relationships with other tool vendors through 
mutual dependence on a common architecture. 

The Eclipse architecture has made possible a rapidly expanding new market for both 
new and existing products. A recent visit to just one web site located 50 Eclipse plug-ins 
available either as open source or as commercial products. For example, the latest version 



 
CASE STUDY: ECLIPSE 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 75 

of AcmeStudio [Acme 04] is now built as an Eclipse plug-in. The granularity of a plug-in 
allows small, non-profit organizations as well as large companies to participate in the 
marketplace. 

Several strategies come together here. The strategy of open source is well known and 
provides many benefits. The Eclipse project has chosen an architecture that facilitates the 
integration of contributions from a diverse group. The strategy of providing a 
configurable tool for developers builds the community of users who will, at some point, 
be in the market for commercial goods and services. 

5 ACTION LIST 

Lets consider some steps that you might take to increase the strategic value of your 
software architecture. 

• Develop a comprehensive, modern, validated software architecture for every 
product you build. Too many companies still neglect this first, and most 
fundamental step. Use UML, as shown in Figure 3, or similar architecture 
description notations so that the architecture description is precise and 
unambiguous. 

• Coordinate the individual software architectures in your organization. Use 
software product line techniques for sets of products that are closely related. Use 
enterprise architecture techniques to organize in-house activities and products. 

• Ensure close fit among product development activities by organizing around the 
architecture. Use ADD or similar architecture design techniques to establish 
traceability between the software architecture and corporate priorities. 

• Ensure that trade-off decisions are traceable to the qualities and ultimately the 
strategic objectives of the organization. Provide architectural views that show the 
mapping between corporate strategic goals and architectural decisions and the 
evolution of the architecture. 

• Scan the environment continually for emerging technology trends, industry 
consortia that form around a specific technology such as the Object Management 
Group (OMG) and stay current with software architectures that are defined by 
domain specific groups for a particular domain such as automotive or 
telecommunications.

6 SUMMARY 

The software architecture is a key ingredient in a software-intensive product development 
effort. It provides a means of defining and achieving corporate strategic objectives. I have 
illustrated several ways in which this is accomplished. Finally I listed some possible 
actions that can be taken by those who wish to have a strategic impact in their company.  



 
SOFTWARE ARCHITECTURE 

 
 
 
 

76 JOURNAL OF OBJECT TECHNOLOGY VOL. 3, NO. 5 

REFERENCES 

[Acme 04] AcmeStudio http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html. 

[Allen 94] Robert Allen and David Garlan. „Formalizing Architectural Connection”, 
Proceedings of the 16th International Conference on Software Engineering, 
May 1994. 

[Bass 03] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in 
Practice, Addison-Wesley, 2003. 

[Clements01] Paul Clements and Linda Northrop: Software Product Lines: Practices 
and Patterns, Addison-Wesley, 2001. 

[Hansen 03] Paul Hansen. “Software as Product”. Automotive Industries, Oct. 2003. 

[Lloyd 99] P.T.L. Lloyd and G.M. Galambos. “Technical reference architectures”, IBM 
Systems Journal, v 38, n 1, 1999. 

[Luckham 95] David C. Luckham and James Vera. “An Event-based Architecture 
Definition Language”, IEEE Transactions on Software Engineering, v 21, n 9, 
pp 717 – 734, Sept 1995. 

[Maccari 02] Alessandro Maccari, Galal H. Galal. « Introducing the Software 
Architectonic Viewpoint”. WICSA 2002, pages 175 – 189. 

[Malan 02] Ruth Malan and Dana Bredemeyer. Strategy Architect Competency 
Elaboration, http://www.bredemeyer.com/pdf_files/StrategyCompetency.PDF, 
2002. 

[Malveau 04] Raphael Malveau. “Bridginging the Gap: Business and Software 
Architecture, Part 1 – 4”, http://www.cutter.com/research/2004/ 
edge040113.html. 

[McGregor 04] John D. McGregor: “Software Product Lines”, in Journal of Object 
Technology, vol. 3, no. 3, March-April 2004, pp. 65-74. 
http://www.jot.fm/issues/issue_2004_03/column6  

[Nokia 04] Nokia, 
http://www.nokia.com/BaseProject/Sites/NOKIA_MAIN_18022/CDA/Catego
ries/Phones/technologies/ 

[OMG01] Object Management Group: Model Driven Architecture, Doc # ormsc/2001-
07-01, Object Management Group, 2001. 

[OMG03] Object Management Group: OMG Unified Modeling Language Specification 
Version 1.5, Object Management Group, 2003. 

[Porter 96] Michael E. Porter. “What is Strategy?” Harvard Business Review, Nov. – Dec. 
1996. 

[UML 03] Object Management Group. Unified Modeling Language 1.5, 2003. 

http://www-2.cs.cmu.edu/~acme/AcmeStudio/AcmeStudio.html
http://www.bredemeyer.com/pdf_files/StrategyCompetency.PDF,
http://www.cutter.com/research/2004/edge040113.html
http://www.cutter.com/research/2004/edge040113.html
http://www.jot.fm/issues/issue_2004_03/column6
http://www.nokia.com/BaseProject/Sites/NOKIA_MAIN_18022/CDA/Categories/Phones/technologies/


 
SUMMARY 
 
 
 
 

VOL. 3, NO. 5 JOURNAL OF OBJECT TECHNOLOGY 77 

[Zachman 87] John A. Zachman. “A Framework for Information Systems Architecture”, 
IBM Systems Journal, vol. 26, no. 3, 1987. 

 

About the author 
Dr. John D. McGregor is an associate professor of computer science at Clemson 
University and a partner in Luminary Software, a software engineering consulting firm. 
His research interests are software product lines and component-base software 
engineering. His latest book is A Practical Guide to Testing Object-Oriented Software 
(Addison-Wesley 2001). Contact him at johnmc@lumsoft.com. 

mailto:johnmc@lumsoft.com

